
Solving Maximum Flow Problems in J

Michal Dobrogost ∗

1 Abstract

After a brief introduction to maximum flow problems, a solution is formulated in J. The
existing family of push-relabel algorithms is refined in two ways to better suit the high-level
nature of J. The focus is on correctness and pedagogy not outright execution efficiency. We
conclude by tracing the execution over a specific maximum flow instance. A proficiency in the
J programming language is assumed.

2 Introduction

Maximum flow problems were first formulated in 1954 by T.E. Harris to model Soviet railway
traffic. The motivation was to find the maximum carrying capacity of the railway system
between two cities. An additional motivation was the dual, minimum cut, problem which
would allow one to determine how to disconnect a railway network most efficiently [1].

Solving maxflow has applications in bipartite matching, vertex cover, scheduling, baseball
elimination, image segmentation and many others [6, 7, 4]. I was lead down the path of imple-
menting a solver in J while exploring network robustness measures and the edge connectivity
of a graph in particular. Network robustness is concerned with qualifying how reliable a given
network is in the face of failing edges or nodes. Edge connectivity is one such measure and is
defined as the minimum number of edges that need to be removed from a graph in order to
disconnect it [5].

Maximum flow problems can be defined as follows: given a graph, two distinguished nodes, s
and t, and a capacity constraint on each edge find the maximum amount of flow from s to t
through the edges of the graph so that the flow through any edge does not exceed its capacity.

∗michal dot dobrogost at gmail
www.cucave.net/papers/jmaxflow

1

www.cucave.net/papers/jmaxflow

Figure 1: A maximum flow instance with edges labeled by their capacity. This graph will serve
as a running example.

To be more precise, given a graph G = (V,E), nodes s, t ∈ V and a function C : V × V → R+
find a function F : V × V → R such that:

∀x, y ∈ V, F (x, y) ≤ C(x, y) (honour edge capacities)

∀x ∈ V \ {s, t},
∑
z∈V

F (z, x)− F (x, z) = 0 (nodes conserve flow)

∀x, y ∈ V, F (x, y) = −F (y, x) (skew symmetry)

arg max
F

|F | =
∑
x∈V

F (s, x) =
∑
x∈V

F (x, t) (maximize flow amount)

The instance in Figure 1 is essentially encapsulated in a single |V | × |V | matrix where the
entry at Cij represents the maximum amount of flow allowed along the edge from node i to
node j.

C;s;t

+---------+-+-+

|0 3 3 0 0|0|4|

|0 0 2 1 0| | |

|0 0 0 1 3| | |

|0 0 0 0 3| | |

|0 0 0 0 0| | |

+---------+-+-+

The first three properties and the summation of the fourth can be readily expressed in J. The
maximization of the fourth, while satisfying the others, is the goal of this paper. The flow F
is expressed as a matrix of the same shape as C.

edgeCapSatisified=. *./ , F <: C

conserveFlowSatisified=. *./ 0= (-. (i.#F) e. s,t) # (+/ - +/"1) F

skewSymSatisified=. *./ 0= , F + |:F

flowAmount=. +/ {. F

2

Figure 2: A flow is shown. Edges are labeled with their flow/capacity.

3 The Residual Graph

An implicit choice was made in that the domains of C and F were defined as V × V and not
E. Suppose you have two nodes that have a single edge between them (for example a and b).
Once flow is sent along that edge, from a to b, you can now send flow in the other direction,
from b to a, by decreasing the amount of flow on the original edge. Essentially, any flow F will
induce a residual graph in such a way. This is demonstrated in Figures 2 and 3.

] F=. 5 5 $ 0 1 1 0 0, 0 0 1 0 0, 0 0 0 1 1, 0 0 0 0 1, 0 0 0 0 0

0 1 1 0 0

0 0 1 0 0

0 0 0 1 1

0 0 0 0 1

0 0 0 0 0

s

a

b

c

t
2

1

1

12
1

1

1
2

2

1

1

Figure 3: The residual graph induced by the flow in Figure 2. The edges are labeled with
their residual capacity. This is the only time that the residual graph is made explicit.

3

] F =. (skewSym=. - |:) F

0 1 1 0 0

_1 0 1 0 0

_1 _1 0 1 1

0 0 _1 0 1

0 0 _1 _1 0

] Residual=. C - F

0 2 2 0 0

1 0 1 1 0

1 1 0 0 2

0 0 1 0 2

0 0 1 1 0

During the execution of the algorithm it is useful to be able to update only overflowing nodes.
A skew symmetric update is required for which we introduce the updateSkewSym function. In
this example we push an additional unit of flow from nodes s and a, to b.

updateSkewSym=. 4 : 0

’f’=. x

’vs fDelta’=. y

f + skewSym fDelta vs} ($f) $ 0

)

F ; F updateSkewSym (0,1);(2 5 $ 0 0 1 0 0)

+-------------+-------------+

| 0 1 1 0 0| 0 1 2 0 0|

|_1 0 1 0 0|_1 0 2 0 0|

|_1 _1 0 1 1|_2 _2 0 1 1|

| 0 0 _1 0 1| 0 0 _1 0 1|

| 0 0 _1 _1 0| 0 0 _1 _1 0|

+-------------+-------------+

4 Algorithm Prerequisites

There are many possible approaches to solving maxflow (an overview is presented in [2]). In
practice push-relabel algorithms are the fastest [3] and an instance of this family is presented
here.

Push relabel algorithms relax the flow conservation property by maintaining a preflow instead.
A preflow has the requirement that, for internal nodes, more flow may come in than leave and
if this is the case the node is referred to as overflowing.

∀x ∈ V \ {s, t},
∑
z∈V

F (z, x)− F (x, z) ≥ 0 (preflow)

4

Figure 4: A preflow is shown. Edges are labeled with flow/capacity. Nodes are labeled with
name(excess).

The excess flow coming into a node may be computed using a difference of the flow matrix to
its transpose. The definition of vertexExcess takes a skew symmetric flow as input and uses
the rank changing operator "1 instead of transpose.

] F=. 5 5 $ 0 3 3 0 0, 0 0 2 0 0, 0 0 0 1 0, 0 0 0 0 0, 0 0 0 0 0

0 3 3 0 0

0 0 2 0 0

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

(vertexExcess=. 0.5 * (+/) - (+/"1)) skewSym F

_6 1 4 1 0

A height function H : V → N0 labels the nodes and restricts where an overflowing node’s flow
may go next. The intuition is that flow may only go downhill from a node of higher height to
a node of lower height.

H(s) = |V |
H(t) = 0

(C − F)(u, v) > 0 =⇒ H(u) ≤ H(v) + 1

A utility function is used for restricting a vector up to a given cumulative sum:

untilAddTo=. 4 : 0

(<.&y) &.: (+/\"1) x

)

(i.2 7) ([; untilAddTo ; (+/"1 @: untilAddTo)) 7,21

+-----------------+-------------+----+

|0 1 2 3 4 5 6|0 1 2 3 1 0 0|7 21|

|7 8 9 10 11 12 13|7 8 6 0 0 0 0| |

+-----------------+-------------+----+

5

5 Algorithm

The algorithm is initialized by pushing as much flow as possible from s to all adjacent nodes.
All heights are initialized to zero except for H(s) = |V |. The return type here serves as the
input and return type for the other verbs in this section, this can be seen as the current state
of the execution.

NB. Initialize push-relabel data structures

NB. Returns (flow, residual capacities, vertex heights, vertex excess)

init=. 3 : 0

’C s t’=. y NB. (original capacities, index of s, index of t)

n=. #c

NB. Initialize flow by sending out as much as possible from s.

F=. (($C)$0) updateSkewSym s ; s{C

NB. Initalize heights by setting s height to n, all others to 0.

H=. (n,0) (s,t)} n $ 0

NB. Put them all together

F;(C - F);H;(vertexExcess F)

)

The remainder of the algorithm is a repetition of two operations: relabel and push. In
relabel overflowing nodes are found whose height is insufficient to push out excess flow. The
height is then increased to the maximum allowed by the definition of the height function which
is governed by the residual neighbors of a node.

relabel=. 4 : 0

’C s t’=. x

NB. (original capacities, index of s, index of t)

’F R H E’=. y NB. (flow, residual, vertex heights, vertex excess)

NB. Active (overflowing) nodes

a=. 0 0 (s,t)} E > 0

aIx=. a # i. #c

NB. Update height of active nodes by one more than their min neighbor

H2=. (1+ (0 < a#R) (<./ @ #)"1 H) aIx} H

F;R;H2;E

)

In push as much excess flow as possible is pushed out of an overflowing node. Only neighboring
nodes to which there is a residual edge and whose height is one less than the overflowing node’s

6

height may accept the excess flow. Because of the constraints on the height function, a height
difference of one is the same as pushing excess flow to neighboring nodes of lower height. We
use untilAddTo to push the excess flow to as many neighbors as possible - limited by the excess
amount overflowing or by the residual capacity of the outgoing edges.

push=. 4 : 0

’C s t’=. x NB. (original capacities, index of s, index of t)

’F R H E’=. y NB. (flow, residual, vertex heights, vertex excess)

NB. Active (overflowing) nodes

a=. 0 0 (s,t)} E > 0

aIx=. a # i. #c

NB. Selection of active vertex edges which have positive residual capacity

edgesPosCapacity=. 0 < a#R

NB. Selection of active vertex edges to nodes of height smaller by one

edgesHDiff=. 1 = (a#H) (-"0 _) H

NB. Residual capacity of active vertex edges which can take more flow

edges=. (a#R) * edgesPosCapacity * edgesHDiff

NB. Add flow along the first residual edges but limited by the excess amount

flowToAdd=. edges untilAddTo (a#E)

NB. Add the flow

F2=. F updateSkewSym aIx;flowToAdd

NB. Find qualifying edges for each active vertex

F2;(C - F2);H;(vertexExcess F2)

)

Finally we provide a wrapper that initializes the data structures and then alternatively runs
relabel and push operations until the data structures stop changing. Once that happens,
progress has stopped and the algorithm is complete.

maxflow=: 4 : 0

’C’=. x

’s t’=. y

’F R H E’=. ((C;s;t)&push @: ((C;s;t)&relabel))^:_ init (C;s;t)

F

)

7

c maxflow s;t

0 2 3 0 0

_2 0 1 1 0

_3 _1 0 1 3

0 _1 _1 0 2

0 0 _3 _2 0

6 Correctness

The algorithm was tested against solver-5 from the First DIMACS Implementation Challenge1.
In all tested cases the resulting flow amount matched that of the other solver. A DIMACS
format reader in J has also been implemented 2.

Full correctness proofs for the push-relabel family of algorithms can be found in [3]. Here we
present the atomic description of push and relabel as given in the full proofs. The atomic
operations apply to a single node or edge and can be applied so long as preconditions are met.
Correctness is proved here by showing that extending these operations to work over all possible
inputs they apply to is also correct.

relabel(u)

Precondition: u is overflowing, (C − F)(u, v) > 0 =⇒ H(u) ≤ H(v).
Effect: H(u) is increased to one more than the minimum H(v) where (C − F)(u, v) > 0.

push(u,v)

Precondition: u is overflowing, (C − F)(u, v) > 0 =⇒ H(u) = H(v) + 1.
Effect: push the minimum of E(u) or (C − F)(u, v) units of flow from u to v.

Relabeling multiple nodes

It is correct to apply relabel over all nodes to which it applies.

The major difference is that we do not check the second precondition, however, this has no
effect except for additional runtime costs. By the definition of H we have that (C−F)(u, v) >
0 =⇒ H(u) ≤ H(v) + 1. Since the height is updated to one more than the minimum we
know that the height will not change at all (if H(u) = H(v)− 1) or will increase otherwise. So
the operation may be applied and produce no change, but that is the same as not applying it
at all because the precondition is not met. This is the same progress condition as the atomic
relabel in [3] provides.

Since the atomic operation may be applied in any order, and only a single node’s entry in H
is updated by the atomic version, it is safe to apply the operation to all overflowing nodes at
once and is equivalent to any ordering of sequential relabel operations.

1http://dimacs.rutgers.edu/Challenges/
2www.cucave.net/papers/jmaxflow

8

http://dimacs.rutgers.edu/Challenges/
www.cucave.net/papers/jmaxflow

Pushing excess out of multiple nodes

It is correct to apply push over all nodes to which it applies.

The preconditions are checked as listed for the scalar case. Pushing can remove and add edges
in the residual graph as well as modify their capacities. The task is to ensure that pushing out
of multiple nodes will not cause conflicts.

The only type of edge that is removed has its starting point in the overflowing node. The only
type of edge that is added has its end point in the overflowing node. Both types of edges can
be modified. Since a height difference of one is required only one node out of any pair of nodes
connected in the residual graph will satisfy the preconditions to push flow to the receiving
node. This is enough to ensure that each scalar operation affects a different set of edges than
any other scalar operation that applies at the same time.

Pushing does not change the height of a node and so it does not affect its own preconditions
that way. However, decreasing the excess or making a choice between multiple different targets
of the push may affect what pushes are possible in the future. This is an arbitrary choice and
so there exists a set of atomic push operations which will have the same effect as applying
them all at once so long as the same choices of source and target nodes is made.

7 Example

(a) State after initialization. (b) Node B splits its excess onto both of its neigh-
bors. This is because node c comes before t in the
node ordering.

(c) Node A can push to B now that there is a height
differential.

(d) Node B pushes remaining flow to T as limited
by the edge capacity.

9

(e) Nodes A and B now swap excess until they
achieve sufficient height.

(f) Nodes A and B swapping.

(g) Nodes A and B swapping. (h) Node A has achieved sufficient height to push
back to S.

Figure 1: Tracing a complete run. Edges are labeled with flow/capacity while nodes are labeled
with excess. Vertex height is indicated by the length of a node’s shadow. Each step consists
of one relabel and one push operation.

8 Conclusion

An extension of push-relabel algorithms was made to apply the atomic operations to multiple
nodes at once. This is a requirement for efficient implementation in J. An arbitrary ordering
of operations results in a O

(
|V |2|E|

)
time bound for push-relabel algorithms. Better bounds

exist when the order of scalar operations is carefully controlled. This implementation is worse
than the baseline bound because some individual steps were implemented for clarity:

• updateSkewSym builds an entire flow matrix instead of updating individual rows of the
current matrix.

• untilAddTo has to run over a representation where all nodes are listed and not just
possible residual neighbors. A more sparse graph representation would need to be chosen.

• vertexExcess recomputes the excess amount by summing all edges of each node, a more
incremental approach would be more efficient.

10

Writing a solver directly in J has illuminated the details of push-relabel algorithms. It has also
shaped the initial thinking - elucidating the idea of preflow before I dove into existing literature.
Framing the algorithm in J naturally resulted in identifying potential areas of parallelism.

References

[1] Alexander Schrijver On the history of the transportation and maximum flow problems.
Mathematical Programming, February 2002, Volume 91 Issue 3, pages 437-445.

[2] Andrew V. Goldberg, Robert E. Tarjan A new approach to the maximum-flow problem.
Journal of the ACM Oct. 1988, Volume 35 Issue 4, pages 921-940.

[3] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein Introduction to
Algorithms (2nd edition) MIT Press and McGraw-Hill 2001.

[4] Ravindra K. Ahuja, Thomas L. Magnanti, James B. Orlin Network Flows: Theory, Algo-
rithms, and Applications Prentice-Hall, Inc. Upper Saddle River, NJ, USA 1993.

[5] Wendy Ellens Effective resistance and other graph measures for network robustness PhD
Thesis, Mathematisch Instituut at the University of Leiden 2011.

[6] Jeff Erickson Algorithms Lecture 23 : Applications of Maximum Flow http://www.cs.

uiuc.edu/~jeffe/teaching/algorithms/notes/23-maxflowapps.pdf Fall 2010.

[7] Nikhil Bansal Maximum Flow Applications http://www.win.tue.nl/~nikhil/courses/

2WO08/max-flow-applications-4up.pdf Winter 2008.

11

http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/notes/23-maxflowapps.pdf
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/notes/23-maxflowapps.pdf
http://www.win.tue.nl/~nikhil/courses/2WO08/max-flow-applications-4up.pdf
http://www.win.tue.nl/~nikhil/courses/2WO08/max-flow-applications-4up.pdf

	Abstract
	Introduction
	The Residual Graph
	Algorithm Prerequisites
	Algorithm
	Correctness
	Example
	Conclusion

